
iX Developer 2020 – Modern software architectures72

Template-Version: 55

Metadaten-Schlagwort: Security II
Metadaten-Rubrik: Quality assurance
Review

Metadaten-Ausgabennummer: Developer
Metadaten-Ausgabejahr: 2020 – Modern software architectu-
res

Exposed APIs are fast becoming the most popular place in
which to attack Web applications. In response to this situa-
tion, the Open Web Application Security Project (OWASP)

has published a new and specialised API Security Top Ten. The
original Top Ten is a widely used list of the ten principal vulner-
abilities to be found in Web applications. The list was published
for the first time in 2003 and is based on data supplied by hun-
dreds of organisations worldwide. It provides a detailed descrip-
tion of each vulnerability as well as potential countermeasures.
Over the last few years, OWASP has increasingly included vul-
nerabilities of APIs (Application Programming Interfaces), which
are now becoming more and more widespread in software devel-
opment. Consequently, OWASP no longer spoke of applications
but of “applications or APIs”. The organisation also included
API-specific vulnerabilities such as “A4 – XML External Enti-
ties“ in the 2017 edition. In 2019, OWASP set an example by
publishing its own Top Ten of vulnerabilities to be found in APIs
[a]. With it, the security project emphasises the increasing im-
portance of API security for companies.

Dedicated security products such as Web application firewalls
(WAF), API gateways and CIAM (Customer Identity Access
Management) systems can do a lot to protect the programming
interfaces. However, it would be grossly negligent to rely on
products of this kind only. The most important protection is

provided by the developers of APIs as they know the vulnerabil-
ities and how to avoid them.

SPAs fuel the spread of APIs

In contrast to just ten years ago, Web applications are now usu-
ally single-page applications (SPA) which integrate a multitude
of APIs, in the form of microservices for example. Web frame-
works such as Angular or React are used in the development of
the user interface. The APIs encapsulate individual aspects of the
business logic. The configuration of the elements on the user in-
terface is geared towards “rich clients”.

Modern APIs are typically implemented as RESTful Web ser-
vices. The SPAs access them directly from the browser, making
them as prone to attacks as traditional Web applications. Unfortu-
nately, APIs of this kind often exhibit similar or even identical vul-
nerabilities. To make matters worse, they are located even closer
to the sensitive data than they for example were when situated
behind a Java enterprise facade.

In a new API security study [b], Gartner estimates that, by 2021,
the greatest vulnerabilities in 90% of Web applications will be
due to exposed APIs. In line with this, the abuse of APIs will be-
come the principal attack vector by 2022 and will lead to world-

APIs are increasingly becoming a target for hackers.
The new OWASP list of vulnerabilities shows where
developers are required to take action.

Martin Burkhart

Well protected
The new and specialised OWASP API Security Top 10

Quality assurance | Security II﻿

73

Template-Version: 55

wide data breaches. The press is currently reporting prominent
data breaches caused by insecure APIs - such as the hacking of the
US Postal Services in 2018 [c], which involved the data of 60 mil-
lion users. The reason for the successful attack was the absence
of fundamental control mechanisms regulating access to objects.

Comparing the charts

When we compare the new Top Ten for APIs with the previous Top
Ten for Web applications from the year 2017 (A1-A10) [d], we no-
tice that a number of vulnerabilities are identical or at least similar:

•	 Broken Authentication (API2, A2)
•	 Security Misconfiguration (API7, A6)
•	 Injection (API8, A1)
•	 Insufficient Logging & Monitoring (API10, A10)
This is no doubt partly because traditional Web applications and
SPAs with APIs basically perform the same tasks. Both approaches
provide a user interface in Web browsers, and both have to au-
thenticate users. They both receive user data and manipulate data
records in databases. Both approaches run on servers or in con-
tainers, making them prone to errors in configuration. Now as
before, administrators supervise operation and security by mon-
itoring log data.

The lists not only have overlapping subjects – they also share
a similar prioritisation of the vulnerabilities. Injection is the only
exception: it is in eighth place on the API list, whereas it is right
at the top of the Web application list. This may be based on the
assumption that modern Web frameworks increasingly perform
functions for validating the input data, so that clients hand over
fewer malicious strings to the APIs. However, we should take
into account that native mobile apps or IoT clients use the APIs
too. The necessary frameworks are lacking there. Also, we should
never rely on client-side validation as hackers can circumvent
the frameworks and launch direct attacks on the APIs.

Interestingly, “XML External Entities (XEE)” is not included
in the API list. This is probably due to the dwindling importance
of SOAP Web services. “A7 Cross-Site Scripting (XSS)” is also
missing from the API list. OWASP apparently sees XSS as being
a browser problem only. Admittedly, APIs do not interpret Java
Script, so they are not immediately prone to XSS. However, API
end points should validate the input data in a way ensuring that
they do not contain JavaScript commands which could be stored
permanently by an application. Depending on the client, the com-
mands - and with them XSS – could well pose a problem.

API-specific vulnerabilities

The generic subject “A5 Broken Access Control” is divided up
into different aspects in the API list. OWASP takes the funda-
mental structure of API calls as well as the formats used (such
as JSON) into account. In the case of unauthorised accesses, the
organisation makes a distinction as to whether an access involves
whole objects (API1) or individual attributes of objects. In terms
of attributes, OWASP also distinguishes between reading (API3)
and modifying (API6).

In comparison with the OWASP Top 10, there are also two
new accesses – “API 4 Lack of Resources & Rate Limiting” and
“API9 Improper Assets Management”. This is understandable
as API end points are closer to the effective infrastructure than
the URL of a servlet that processes data coming from an HTML
form.

The appropriate security infrastructure

State-of-the-art security services are often installed upstream so
that all applications and interfaces can benefit from them. The
services consist of a combination of Web application firewalls
and API management integrated with functions for access
management (see Fig. 1).

The functions of an architecture of this kind vary depending
on the product range. Fundamentally, however, it provides the
option of publishing new APIs in a targeted way (API9). The fact
that an API is available internally does not automatically mean

OWASP Top 10 from 2017
Number Title

A1 Injection
A2 Broken Authentication
A3 Sensitive Data Exposure
A4 XML External Entities (XXE)
A5 Broken Access Control
A6 Security Misconfiguration
A7 Cross-Site Scripting (XSS)
A8 Insecure Deserialization
A9 Using Components with Known Vulnerabilities
A10 Insufficient Logging & Monitoring

iX Developer 2020 – Modern software architectures74

Quality assurance | Security II﻿

Template-Version: 55

that it is approved for public access. API gateways can provide
API keys which allow external developers to build clients on the
basis of the public APIs.

When a technical client accesses the system using a valid
key, the appropriate usage policy is applied. Restrictions such
as throttling or quotas can be implemented here (API4). If there
are specifications for APIs – in the OpenAPI format, for exam-
ple – the API gateways can read them and ensure that only con-
formal requests get through. This prevents exploration attacks
or forceful browsing attacks on APIs because of unprotected,
undocumented end points or due to legacy end points or attrib-
utes (API9). It also allows the correct typing of the attributes on
the gateway to be verified and implemented. If the specifications
are practical and precise, they can be used to prevent injection
attacks (API8).

CIAM systems are intended for the administration of iden-
tity and access rights. They authenticate the users (API2) and
use standards such as OAuth, OpenID Connect or SAML to
authorise them for access to applications and APIs (API5). This
also allows the implementation of an overarching single sign-on
(SSO) and the processing of standard tasks by means of user
self-service.

Web application firewalls offer a multitude of protective mech-
anisms against known attacks such as injections, XSS or CSRF
(API8). In addition, they include secure basic settings for HTTP
headers and TLS (API7) as well as functions for certificate
management, for example using Letʼs Encrypt [e]. For good API
protection, it is important to make sure that the WAF analyses
JSON objects effectively and is able to apply its rules to indi-
vidual attributes. If this were not the case, an appropriate API

security gateway would have to do the job
instead. However, a number of API gate-
ways focus on API management and ne-
glect security aspects.

A dedicated security infrastructure fa-
cilitates monitoring, troubleshooting and
forensic analyses (API10). When SIEM
systems are used too, information on dif-
ferent components can be easily compiled
and correlated. Moreover, alerting when
anomalies occur permits the user to exit
the reactive mode and gain valuable time
when infiltration occurs.

To allow them to react quickly to previ-
ously known attacks and situations, many
security products now apply machine

OWASP API Security Top 10
Number Title Description

API1 Broken Object
Level Authorization

API end points receive object IDs without checking whether the user/client is authorised to access these objects.

API2 Broken Authentication Authentication logic is often implemented incorrectly, allowing hackers to compromise authentication tokens or
exploit errors in authentication. If the identity of the client or user cannot be reliably determined, there is no
foundation for API security.

API3 Excessive Data Exposure Developers tend to generally expose all object properties on end points, including the sensitive ones.
They rely on the client to filter the data in a suitable way before they are displayed to the user.

API4 Lack of Resources &
Rate Limiting

APIs do not limit the size and number of the resources requested by a client. This can lead to bad performance or
even to Denial of Service (DoS) in extreme cases. It can also make brute force attacks on passwords etc. possible.

API5 Broken Function
Level Authorization

Complex access rules with different hierarchies, groups and roles and an unclear separation between regular and
administrative functions lead to authorisation errors, allowing hackers to access resources without being authorised
to do so.

API6 Mass Assignment Data provided by the client, in the JSON format for example, are filled into the data model directly and with no
filtering. Hackers can guess at additional attributes, view them in the documentation or find them out using exploration,
allowing them to modify object attributes to which they should not have access.

API7 Security Misconfiguration Insecure configurations usually result from insecure default settings, incomplete configurations, publicly available
cloud storage, incorrectly configured HTTPS headers and methods, excessively open CORS rules or error messages
which reveal too much.

API8 Injection Injection vulnerabilities for SQL, NoSQL, LDAP or OS commands are the result when insecure input data are sent
to an interpreter as part of a command. Potentially, this can allow a hacker to trigger malicious activities and read or
change data without being authorised to do so.

API9 Improper Assets
Management

APIs tend to expose more end points than traditional Web applications do. This makes correct and up-to-date
documentation extremely important. For example, an inventory of the hosts and API versions prevents the publication
of APIs and debugging end points which are no longer supported.

API10 Insufficient Logging &
Monitoring

Insufficient logging and monitoring in conjunction with lacking or inadequate integration with incident response
allows hackers to attack systems, implant themselves there and attack further targets with the aim of extracting or
modifying data. Studies show that breaches are often only discovered after 200 days, and usually first by external
instances rather than by internal processes.

Browser Smartphone IoT Ecosystem

Web Application Firewall

API Gateway Identity & Access
Management

Applications and APIs
(on-premises or in the cloud)

API API

Web application firewall, API gateway
and IAM work hand in hand to ensure
comprehensive API protection.

75iX Developer 2020 – Modern software architectures

Template-Version: 55

learning (ML). ML is difficult for individual developers to use
as the methods require a lot of data and benefit from an over
arching service perspective.

The duties of developers

Independently of external gateways, some tasks are always left
up to the developers. In general, it can be said that they should
develop software in a way that makes it secure without the need
for upstream security services. Among other things, they should
validate inputs regardless of whether a WAF checks for injection
attacks. WAFs always have to achieve a compromise between
false positives and false negatives, so they do not have a 100%
detection rate. In addition, changes to the infrastructure can hap-
pen without the developer noticing. It is recommendable to en-
sure security by design and not as an afterthought. Vulnerability
scanners integrated into the build pipeline can help to reveal ex-
isting vulnerabilities in the finished code.

Developers are obliged to take care of the technical authori-
sation of business objects. An API gateway knows the end points
and is able to distinguish between GET and UPDATE calls. How-
ever, it is not familiar with the business objects and their attrib-
utes. For this reason, developers have to ensure that object IDs
provided by the client are effectively permitted for authenticated
users (API1). This check is also necessary when individual at-
tributes are modified (API6). When minimising data delivery,
developers should not rely on the client, but should filter out risky
attributes on the API side instead (API3).

The handling of API keys is important too. They are not ex-
plicitly a means for authentication, instead only allowing the
identification of technical clients such as mobile apps or SPAs.
An application must not only approve accesses to APIs on the
basis of API keys, but should also ensure solid user authentica-
tion and authorisation. Of course, public cloud storage is no place
in which to keep API keys. If clients require hard-coded API keys,
teams have to invest in client security in order to make attacks
entailing the debugging or decompiling of the client code more
difficult.

APIs as the principal attack vector

In the next few years, APIs are set to become the principal places
in which to attack Web applications. In response to this, OWASP
has published a new and specialised API Security Top Ten. Some
subjects in the new list, such as authentication and injection at-
tacks, have been predominant in Web security since 2003, the
year in which OWASP published the first Top Ten.

It is especially important to prevent the vulnerabilities in the
context of APIs. Dedicated security products such as Web appli-
cation firewalls, API gateways and CIAM systems can do a lot
to ensure the protection of APIs. However, developers must not
rely on products only. As before, they are responsible for certain
subjects such as the technical authorisation of business objects
and the secure handling of API keys.	   (ane@ix.de)

Martin Burkhart
is Head of Product Management at Airlock, a security
innovation of Ergon Informatik AG. At Ergon, Martin
Burkhart initially headed IAM integration projects and
has been responsible for product management for
the Airlock Secure Access Hub since 2012.

Online sources

[a]	 OWASP API Security Project
www.owasp.org/index.php/OWASP_API_Security_Project

[b]	 Gartner-Studie: API Security: What You Need to Do to Protect
Your APIs www.gartner.com/en/documents/3956746/api-security-
what-you-need-to-do-to-protect-your-apis

[c]	 USPS Site Exposed Data on 60 Million Users krebsonsecurity.com/
2018/11/usps-site-exposed-data-on-60-million-users/
OWASP Top Ten owasp.org/www-project-top-ten/

[d]	 Let’s Encrypt letsencrypt.org/de/

